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The application of multiple-objective route choice for in-vehicle route
guidance systems is discussed. A bi-objective path search algorithm is
presented and its use demonstrated. A concept of trip quality is intro-
duced that is composed of two objectives: minimizing travel time and
minimizing trip complexity. Trade-offs between the objectives are
examined. The concept is illustrated through simulation modeling on a
test network. The experiments serve to demonstrate the effects on the
trip performance of pretrip routing and dynamic routing strategies under
full market penetration (an idealized condition) and under varying levels
of demand and trade-offs between time and complexity.

The development of advanced traveler information systems (ATISs),
particularly in-vehicle route guidance systems (IVRGSs), has led to
increased research activity to better understand and model driver
route-choice behavior. One method of modeling route choice is the
use of multiple objectives (or criteria) in the context of performing
path search through a network. Using multiple-objective shortest-
path (MOSP) search is appealing on two levels. From a modeling per-
spective, such as traffic assignment, it enables a more realistic repre-
sentation of driver route choice. From a user perspective, drivers may
feel more comfortable that IVRGS is responsive to their actual travel
preferences.

Several IVRGSs are being deployed in which personal computer–
based routing software considers different path search strategies by
allowing drivers to specify a particular single-objective search strat-
egy. Some IVRGSs in development have attempted to base route
selections on roadway classification (such as avoiding local streets)
in an attempt to account for non-travel-time objectives. For exam-
ple, a system might provide the capability to choose from among the
following strategies: (a) minimum time path, (b) minimum distance
path, (c) most direct path, (d) path that maximizes use of highway,
and (e) path that avoids highways.

There are two apparent shortcomings in these systems. First, arc
costs, such as travel times, are based on free-flow conditions and
therefore do not use real-time information for searching the network
and making route guidance decisions. Second, only a single objec-
tive is used in directing the path search and the only possible trade-
off is in comparing resulting alternative routes generated from the
different objectives. This either-or approach does not capture
the fact that driver route-choice preferences may be shaped by mul-
tiple objectives, some of which may conflict. More desirable would
be trade-offs in which the weighting of the relative importance of
each objective reflects the driver’s routing interests.

This paper explores the use of such weighted trade-offs. The next
section presents an overview of research and issues in MOSP search.
This is followed by a presentation of a specific algorithm and ap-
proach for multiple-objective search that can be applied within
IVRGS in real time. An example of a bicriterion formulation applied
to a small network with idealized peak-period demand follows.
The two objectives used for the study are minimizing path travel time
and minimizing path complexity. Simulation is used to examine the
effects of trading off these objectives.

BACKGROUND

Modeling driver route-choice behavior has focused extensively on
identifying and quantifying the effect of multiple attributes (1,2). In
addition to travel time, behavioral attributes that have been consid-
ered are distance, convenience, and safety (2). Distance is a simple
metric to measure, but it is not obvious how to measure convenience
and safety. Other research has identified distance, traffic signals,
proportion of trips through scenic areas, and proportion of trips
on highways (3). In route choice experiments it has been shown
that minimizing turns is an important choice for drivers (4). Also,
the recent introduction to the marketplace of in-vehicle route choice
navigation systems brings to the fore new possibilities in the
consideration of driver behavior goals.

An example of a new IVRGS-based goal is that of generating
alternatives to the best path (5). In that work an algorithm gives a
driver one path for the inbound trip and a substantially different path
for the outbound trip. The algorithm allows no more than k similar
arcs in the path, where k is set by the user. This approach gives a
geometrically different path to the first one found. This geometric
goal is akin to that of scenic optimization.

This research identifies an IVRGS-oriented metric that has not
been considered previously and offers insight into another geo-
metric goal, the directnessof a driver’s trip. This metric is termed
“trip complexity,” defined as the sum of turning movement costs.
Trip complexity complements trip time as an objective, as the min-
imum trip complexity will not necessarily correspond to the short-
est trip time. For example, this situation would occur when the
most direct path—say, a straight path with minimal complexity—
has considerable congestion. Some drivers would prefer the most
direct path over a shorter time path for ease of decision making and
maneuvering. Thus, trip complexity is akin to the convenience and
safety goals mentioned in the literature (2) that have ambiguous
definitions.

As a convenience goal, minimizing trip complexity gives drivers
a more direct route. As a safety goal, it offers a less demanding route
to those drivers who may be less comfortable with negotiating turns
and other involved maneuvers. Though in-vehicle navigation
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equipment reduces the decision making by identifying turns for the
driver, it does not make the actual maneuvering of the vehicle eas-
ier, an important consideration for many drivers. Commercial vehi-
cle operators, especially those with large trucks, may wish to avoid
paths with turns. Another situation can arise in which trip complex-
ity would be useful to drivers who are comfortable with their vehi-
cles. When trip complexity is invoked as a shared goal with trip
time, the least complex of all the very good trip time paths would be
the most favorable. Thus, minimizing trip complexity generally can
produce convenience and safety improvements that are of potential
interest to any driver.

In making trip complexity an objective, this research is purpose-
fully pursuing an extension of the boundaries of knowledge about
driver behavior and the effects of geometric goals on route choice
and network performance. As such, it moves in the direction of
including safety and convenience in the path search.

Few efforts have attempted to incorporate multiple criteria within
route choice modeling and traffic assignment. Of note is work by
Dial (6) and Leurent (7) in multiple-objective static traffic assign-
ment (STA). Dial, for example, has formulated a bicriterion user
equilibrium assignment based on out-of-pocket cost and trip time
cost as the criteria of mode route choice, parking policy planning,
or congestion pricing. Value of time is treated as a random variable.
He concludes that this approach could be extended to dynamic
traffic assignment as well.

Traffic assignment methods are useful as planning tools and are
being developed for ATIS, but they are not directly applicable to
modeling individualized routing decisions made with the aid of in-
vehicle route guidance systems. Real-time route guidance with
IVRGS can be accomplished by using a path search algorithm in con-
junction with real-time data received from networks equipped with
traffic sensors and communications technologies. The objective is to
enable autonomousroute choice by drivers in response to actual con-
ditions. The IVRGS serves to collect real-time data from the network
and provide the driver with more informed path search capabilities.
By allowing for true multiple-objective search, which reflects driv-
ers’ preferences and trade-offs among competing goals, perceptions
of trip quality and effectiveness of ATIS will be improved.

Methods for applying multiple-criteria decision making to net-
work search problems are well established. Zeleny (8) and Steuer
(9) provide a thorough introduction to the theory of multiple-
criteria decision making. Development and application of MOSP
algorithms able to handle both deterministic and stochastic prob-
lems are also well documented, as discussed by List et al. (10).

There have been few, if any, applications of multiobjective rout-
ing to ITS networks. A significant body of work applying MOSP
algorithms exists in the area of routing hazardous materials. Appli-
cation of MOSP algorithms to hazardous materials was begun by
Cox (11), who explored routing and scheduling decisions. List and
Mirchandani (12) have done multiple-objective routing and siting
for hazardous materials and waste. Turnquist and List (13) have
applied MOSP routing to emergency response in dealing with high-
level radioactive waste shipments. List (14) has also studied emer-
gency response team siting using four objectives: response time,
risk, risk equity, and cost, where the objectives are combined using
weights that sum to 1 (Σwi = 1), to form a generalized cost function.
The multiobjective in-vehicle route choice algorithm used in this
work is derived from the aforementioned work by List (10,12–14).
This research substitutes other goals for route selection more appro-
priate to meet the quality of trip desired by ordinary drivers (i.e.,
those not involved in hazardous waste transport).

OVERVIEW OF BI-OBJECTIVE
SEARCH APPROACH

Seaman (15) developed a theory of quality to define the trade-off of
multiple objectives in support of meeting a goal. His work focused
on identifying the best operating point from process inputs and con-
trollers on-line, continuously and automatically. Extending this idea
to traveler behavior and routing, trip quality can be thought of as a
subjective concept measuring a degree of satisfaction of route
choice under competing goals.

Consider two competing objectives that a driver might use in
making route choice decisions. The first is minimizing travel time;
the second is minimizing trip complexity. The former objective is a
traditional and obvious goal; the latter is introduced to illustrate the
trade-off between time and directness.

Trip Complexity

Complexity can be viewed as an increase in driving task associated
with making road changes in a network. For example, freeway-to-
freeway interchanges require lane changing, merging, and weaving
movements. On surface streets, intersections require left and right
turns, which have degrees of difficulty associated with them.

In this example, application deterministic complexity costs were
assigned to arc-to-arc movements on the basis of the angle of the
turn (in degrees) and the direction of the turn (left or right). The val-
ues assigned were arrived at empirically. For example, in moving
straight ahead, there is a cost of 0. A right turn has a cost of 0.2 and
a left, of 0.3. Table 1 gives a summary of complexity costs used.

Figure 1 gives an illustration of assigning trip complexities. In
this network, Node 88 is a dummy entry node, used only to give a
complexity cost to the vehicle’s entry to the network. The com-
plexity costs are shown for each turn of a path from Node 12 to Node
19. The trip complexity cost of Path 88-12-15-16-29 is 0.5. This cost
includes 0.2 for entering and bearing left at Node 12 (88-12-15), 0.2
for bearing left again at Node 15 (12-15-16), and 0.1 for bearing
right at Node 16 (15-16-19).

Trip Quality

A minimally complex path can take more time, and a minimum time
path can be more complex. Drivers may aim for a compromised

TABLE 1 Turning Movement Complexity Costs
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FIGURE 1 Illustration of trip complexity.

FIGURE 2 MOSP illustration.

situation in which a path produces a good travel time and good
trip complexity. The authors could define the concept trip qual-
ity to reflect the combination of both travel time and trip
complexity:

where

Q = perceived cost of trip quality,
T = perceived value of trip having travel time t,
C = perceived value of trip having complexity c, and
α = trade-off parameter where 0 ≤ α ≤ 1.

The optimal-quality route is the multiple-objective route with the
minimum quality cost. This treatment does not limit trip quality to
trip time and complexity; the concept can clearly be extended
to three or more objectives (14). The actual set of factors that con-
stitute a driver’s trip quality is left for behavior-oriented research.

Q T C= + ( − )α α1 1( )

This paper offers trip time and trip complexity as working surro-
gates to illustrate the concept of multiple-objective routing.

Lexicographic Ordering and Nondominated Solutions

Consider an example examining the effect of trip quality on route
choice. Figure 2 presents a network that highlights four alternative
paths, of many possible paths, for a given origin-destination pair.
Each path differs by travel time and trip complexity. If only travel
time were considered as the objective, Path 1, having the lowest
travel time, would be considered optimal. However, if only trip
complexity were considered as the objective, Path 2 would be
considered optimal.

One way to treat the two objectives is to use a lexicographic
ordering in which one objective is the primary search attribute and
the second is used to break ties. Figure 2 illustrates a lexicographic
ordering of the four paths with travel time as the primary objective.
This search strategy does not allow for direct trade-offs in the val-
ues of the attributes. A more sensitive approach is to consider the
attributes jointly, as in Equation 1, and look for nondominated paths.
Under no circumstances would dominated paths be considered opti-
mal. One issue for further research is developing search routines that
can handle multiple objectives and dismiss dominated solutions
efficiently.

MULTIPLE-OBJECTIVE PATH
SEARCH ALGORITHM

The formulation presented here is for handling a bi-objective search
problem, but it can easily be extended to multiple objectives. Define
a graph G(N,A,T,C) with set of nodes N, set of arcs A, set of arc
travel times T, and turning movement complexities C. Unlike a tra-
ditional label setting approach in which each node is labeled with a
minimum value and points to a predecessor node, it is possible under
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multiple-objective search to reach a node from several partial paths.
Each nondominated partial path must be stored. As a result, this
algorithm uses a partial-path vector to store labels and predecessor
pointers; labels are not assigned directly to nodes.

Let PPI[1 . . . K ] be the partial-path vector with a maximum of K
partial paths to be stored. Each vector consists of six record values:

TN = to-node
TLT = temporary label for time
TLC = temporary label for complexity

Q = trip quality = αTLT + (1 – α)TLC
PL = permanent label = one of three values: ∞ if not yet

reached, 1 if reached and scanned from, and 0 if reached
and dominated

PRED = predecessor partial path, which holds an index pointing
to a different record of the PPI

Let LAST be the last index of PPI set, and let R = set of nodes
reached.

The algorithm is as follows:

• Initialization. Select origin node s. Let LAST = 1; for
PPI[LAST] set TN = s; TLT, TLC, Q, PRED = 0; PL = ∞. Set R =
∅ . Select value for α, where 0 ≤ α ≤ 1.

• Iterations.
1. Of all records in PPI having PL = ∞ find the minimum Q.

(If there are ties, see the note that follows.) Set its index to
k. (Note: if a value of α is chosen such that α ≠ 0 and α ≠
1, ties can be broken by arbitrarily selecting any index. If a
value of 1 or 0 is chosen for α, the search routine should be
modified to use a lexicographic ordering to break ties in the
value of the primary attribute based on the value of the sec-
ondary attribute.)

2. With PPI[k] set PL = 1; TLT = TLC = ∞. If PPI[k].TN ∉ R
then R ∪ PPI[k].TN

3. Get the associated TN of PPI[k] and associate it with I. Scan
out from node I and assign for each reachable node j:

LAST = LAST + 1;
with PPI[LAST] set

TN = j
PRED = k.
TLT = PPI[k].TLT + T(I, j )
TLC = PPI[k].TLC + C(PPI[k – 1].TN, I, j )

4. Domination check. For all nodes that have reached (n ∈ R)
and having multiple TN entries in PPI, check for partial-
path domination. For each node n in Rfind all entries in PPI
where TN = n. For each entry k do:

If the pair (PPI[k].TLT, PPI[k].TLC) is dominated, then set
PPI[k].PL = 0.

[Note: since complexity is a two-arc value (from-arc to to-arc,
involving three nodes), each PPI[k].TLC must be treated carefully
in tests for domination by making sure it is greater than a minimally
safe value greater than the complexity of the largest nondominated
value of complexity for that node n.]

• Termination. The algorithm terminates when there is no
nondominated open node that could be scanned from and reach the
terminal node t. The minimum path is identified by finding the min-
imum value of Q of all PPI records with PPI[k].TN = t. The actual
minimum path is found by traversing the PRED label and reading
off the TN label of all partial paths reached.

Using the network in Figure 1, the algorithm’s search for an opti-
mal path from Node 11 to Node 19 is illustrated. To limit the search
to a manageable size, only the 12 nondominated nodes scanned by
the algorithm are given in Table 2. The scan is done using time-
based search. The path is read back from the nondominated desti-
nation node that has the minimum value of the search criterion. The
table shows the two instances of Node 19, and the one with the time
cost of 1.247 is the minimum for time-based search. The path is
read from the to-node associated with the predecessor partial path
(PPP) back to the partial-path index (PPI). The optimal path-related
values are highlighted in the table. If a nomenclature of (PPI) to-
node [PPP] is used, the path is read: 19[4]-(4)14[1]-(1)11, or Path
11-14-19 read forward. The path nodes selected are presented in
Table 2 in the column “Path” with a “T ” for time-based path. A
complexity-based path or a multiple-objective path (Equation 1)
would have a different scan, but the procedure would be the same,

TABLE 2 Path Search of Nondominated Nodes
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with the scans and the destination to-node choice based on the path
search criterion in use.

SIMULATION EXPERIMENTS

Background

A set of simulation experiments was conducted to illustrate the
application of a multiple-objective search for IVRGS. The goal was
threefold: (a) to study the effect on network performance under
single- and multiple-objective routing strategies, (b) to conduct
sensitivity analysis for a range of α values, and (c) to compare pre-
trip route selection and dynamic rerouting strategies.

Since trip complexity and travel time are measured on different
scales, the trip quality expression (Equation 1) was modified to
include a scaling factor, γ, that makes the nondominated frontier less
skewed and easier to interpret.

In the simulation experiments that follow, trip quality was mini-
mized over a range of α values with γ set to 2.0. When α = 1, the
resulting search is referred to as “time-based”; when α = 0, the
resulting search is referred to as “complexity-based.” For both of
these special cases, a lexicographic ordering is used in the path
search algorithm as described earlier.

The network constructed for the analysis, along with the dynamic
peak-period loading patterns and origin-destination splits, is shown
in Figure 3. There are three origin nodes (11, 12, and 14). The max-
imum demand rate occurs midway into the 1-hr simulation period.
To reveal the capabilities of the search strategies under differing
levels of congestion, the peak volume loaded is varied from 800 to
1,895 vehicles per hour (vph). To compare routing strategies on an
even platform, with minimal complicating effects, it is assumed that
all vehicles are equipped with IVRGS and consist of a single user
class in which all travelers use the same value of α. These assump-
tions are not considered realistic or necessary for IVRGS to be
effective in improving network flows, but they are useful for a para-
metric comparison of routing strategies. The simulator used for the
experiments was developed by Blue et al. and is presented in detail
elsewhere (16, 17). The link performance function is based on
Greenshields flow relationships with the capacity of each arc being
1,800 vph. Arcs are independent. To avoid inter-arc spillbacks,
when the speed on any arc falls below 10 mph, the simulation ter-
minates and the strategy is considered nonfunctional under those
demand and trade-off conditions.

′Q T C= + −α γ α( ) ( )1 2

Performance of Routing Strategies

To obtain statistically significant performance of the routing strate-
gies, 20 replications of each strategy at each peak volume were 
simulated. Average values for the 20 replications were used in the
following analysis.

Pretrip Versus Dynamic Routing

Pretrip routing (PR) represents the case in which at the start of the
trip instantaneous values of travel times and deterministic values of
complexity are used to compute an optimal path to the destination.
The vehicle is constrained to this path for the duration of the trip; no
en route path switching occurs. In dynamic routing (DR), a vehicle’s
prescribed path is reevaluated at each node reached on the basis of
current conditions in the network.

Simulations were conducted at various peak demands and over
the full range of α. Figures 4 and 5 illustrate the trade-off surfaces
for the DR and PR strategies. In these figures, values of α = 1.0 are
at the right. Each point on the trade-off surface for a particular
demand indicates a decrease in α of 0.1. Values of α = 0.6 are
identified as a guide in reading the chart; the arrowhead simply
signifies the direction of increasing volume. In addition, α = 0.6
represents a high rate of change with adjacent values of α. It is a
value for which there is a high rate of trade-off between objectives
in the network’s performance for all peak volumes in which this
level of α is attainable. For higher demand levels, not all values of
α can be simulated because of restrictions in the simulation. At
lower levels of α and higher volumes, severe congestion occurs
and a cutoff rule is implemented as trip travel times greatly
increase.

Trade-off Surface for Dynamic Routing Figure 4 shows the
trade-off surface of time and complexity for DR. The full range of
α values is present at 800 vph. The value of 800 vph is the highest
that will process a full range of α values from 0 to 1. For volumes
higher than 800 vph, solutions could not be obtained for some small
values of α. As volumes increase, path choices based on complex-
ity are difficult to process. The value of 1,895 vph was the highest
volume for which 20 replications were processed.

At 1,895 and 1,845 vph, DR has relatively large trade-offs in trip
time for each downward step in α with almost no change in com-
plexity. At 1,895 vph, DR has two points that have a vertical slope,
a large trade-off between trip time and complexity. At 1,845 vph,
DR still has a nearly vertical slope. This trading off of trip time with-
out any improvement in trip complexity at a high volume is not
advantageous. At 1,800 vph, DR is leveling off; at 1,675, DR begins
to have parallel slopes.

Trade-off Surface for Pretrip Routing Figure 5 shows the
trade-off surface of time and complexity for PR. PR is limited to vol-
umes of 1,675 vph or less, and at 1,675 vph PR successfully per-
forms simulations only for time-based search. Not until 1,500 vph
is a meaningful range of α values simulated successfully. This
shows a significant difference with DR that single-objective time-
based charts would not point out. PR is rather limited in accommo-
dating complexity as a goal on this network, primarily because of
the overconcentration of vehicles on Arc 1516 that DR is capable of
avoiding more successfully.FIGURE 3 Bidirectional network under investigation.
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FIGURE 4 Trade-off surface of trip time and complexity for DR strategy
with a-based multiple-objective search.

At 1,500 vph, the multiple-objective range of PR performance
improves greatly. When superimposed on the DR chart, the PR
curves are virtually identical to the DR curves. DR does not improve
on PR except for volumes above 1,500 vph, but there is a significant
difference thereafter. Since PR is virtually identical to DR until
1,500 vph and has only a very limited ability above 1,500 vph, there
is little reason to continue discussion of PR.

Multiple-Objective Search Results for Trip Time
and Complexity

It is interesting to investigate the values of each objective separately
under the DR case. Figure 6 shows that a maximum average trip
time of between 1.7 and 1.83 min is reached at each volume. There
is a significant change in trip times over the α range, at low volumes
especially, because of a larger range of α over which trip time can
improve. For most of the volumes, trip time changes most rapidly
(maximum slope of the curves) over the interval α = [0.5, 0.7]. In
this range, drivers are more likely to consider alternative routes
because trade-offs can be achieved in the objective space. Flat
regions of the graph represent little difference in path choices among
various values of α. Most notable are the low ([0, 0.2]) and high
([0.7, 1.0]) values of α.

Average trip complexity for DR is shown in Figure 7. The figure
is very similar for DR and PR for the range of volumes over which
they operate. The figure shows an S-curve with a narrow band of

complexity values, virtually independent of peak volume for any
given value of α. The DR strategy chooses on average nearly the
same proportion of the available paths for each peak volume and
value of α. In fact at α = 0.68 and complexity = 0.62, the curves
appear to meet. At volumes of 1,800 vph or more, the DR strategy
allows complexities to rise beyond this narrow band of values. In
general, drivers will experience the greatest change in complexity
over the α interval [0.5, 0.7]. Complexity is relatively unchanged in
the two regions outside these limits.

These figures show that, with respect to travel time, sensitivity to
α changes as demand increases. Less of an effect is seen for com-
plexity. This results from the fact that travel time is a function of
demand and higher levels of demand produce increased travel times.
In turn, higher travel times induce route switching. With respect to
complexity, low values of α reflect the goal of minimizing com-
plexity. As α increases, and emphasis is shifted to travel time, com-
plexity values may increase. However, for any given value of α,
there is little variation for values of complexity over the range of
demands.

CONCLUSIONS

This paper examined the use of multiple-objective routing strategies
for in-vehicle route guidance systems. A multiple-objective search
algorithm was presented. The goal of improving trip quality has
been treated as optimal trade-offs of trip time and complexity for

FIGURE 5 Trade-off surface of trip time and complexity for PR strategy
with a-based multiple-objective search.
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FIGURE 6 Average trip time for DR strategy with a-based multiple-
objective search.

drivers. A simulation experiment was conducted to illustrate the
effects of multiple objectives on network performance. It was shown
how drivers can improve trip quality when a trade-off between trip
time and trip complexity is desired. It was also demonstrated that
substantial network flow improvements over PR are possible when
DR is allowed. The trade-off surface of trip time and complexity for
the full range of α stratified by peak volumes reveals transition
points of the objectives and the range of α values at a given volume.
DR showed significant advantages over PR over the entire α range
above a peak volume of 1,500 vph. PR could be considered a spe-
cial case of DR that occurs at lower volumes. At lower volumes
there is less necessity for en route switching.

In the studied case, performance was assessed for an idealized
network topology and peak-hour demand pattern. The effect of dif-
ferent peak volumes of the demand pattern was examined over an
array of time-complexity trade-offs. Though the experiment was
carefully constructed, the results are network- and demand-specific
and are weighed against its special case nature. There are arc capac-
ity, turning complexity costs, and other modeling assumptions to
consider as well. Complexity was treated as a deterministic (aver-
age) value, but it could be extended to a more realistic probability
density function, much as Dial has done with value of time (6). This
is motivation for further study.

Driver behavior modeling is an area in which the concepts of 
multiple-objective search might be readily applied. It has been in an

effort to capture driver interests that the multiple-objective approach
was taken. Simulation experiments with finer-tuned cognitive psy-
chological models of drivers using MOSP methods appears a fertile
area for research. The experiments should aim to determine the travel
attributes and values of α that constitute trip quality. Discovering the
appropriate distributions for turning costs is an important area for more
effective use of trip complexity as a driver interest in path choice.

In order to compare routing strategies, the experiments employed
a single user class, with all drivers having IVRGS equipment and
using the same value of α. Work is under way to explore the effect
of varying the market penetration of IVRGS and the distribution 
of α among the user population. Further in-laboratory modeling
studies are needed to justify the development of these IVRGS
concepts for real-world driver populations. Performance for both
drivers and network flows must be better understood before real-
time multiobjective IVRG can be realized in the marketplace and on
the road.
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